Biflatness and biprojectivity properties of Banach algebras related to a closed ideal |
کد مقاله : 1001-SHAA |
نویسندگان |
امیر سهامی *1، محسن رحیم بیگی2، منا عاج3 1دانشگاه ایلام 2دانشگاه فرهنگیان ایلام 3دبیر اموزش پرورش |
چکیده مقاله |
In this note, some new notions of Banach homology, like $I$-biflatness and $I$-biprojectivity, for a Banach algebra $A$ are defined, where $I$ is a closed ideal of $A$. As an application, we show that $M(G)$ is $L^{1}(G)$-biprojective ($I$-biflat) if and only if $G$ is a compact group (an amenable group), respectively. Also for a non-zero ideal $I$, we prove that if the Fourier algebra $A(G)$ is $I$-biprojective, then $G$ is a discrete group. To show the differences with classical notions we stablish some examples. |
کلیدواژه ها |
Amenability, $I$-biflatness, $I$-biprojectivity |
وضعیت: پذیرفته شده برای ارائه شفاهی |