| Roberts Orthogonality On Hilbert Spaces with Numerical Radius Approach |
| کد مقاله : 1031-SHAA |
| نویسندگان |
|
Elias Faryad * دانشگاه فردوسی مشهد |
| چکیده مقاله |
| In this paper, the Roberts orthogonality is studied with respect to the numerical radius. As applications a necessary and sufficient conditions for the numerical range to be symmetric for $2 times 2 $ complex matrices is given. Moreover, we show that the Roberts orthogonality with respect to the numerical radius implies that the Roberts, Birkhoff-James and Isosceles orthogonalities for linear operators on a real Hilbert space. Among other results, we prove an interrelation between the Roberts orthogonality and the Birkhoff--James orthogonality in the sense of numerical radius for $n times n$ complex matrices. |
| کلیدواژه ها |
| Roberts orthogonality, Birkhoff--James orthogonality, numerical range, numerical radius |
| وضعیت: پذیرفته شده برای ارائه شفاهی |