Roberts Orthogonality On Hilbert Spaces with Numerical Radius Approach
کد مقاله : 1031-SHAA
Elias Faryad *
دانشگاه فردوسی مشهد
چکیده مقاله:
‎In this paper, ‎‎‎the Roberts orthogonality is ‎studied with respect to the numerical radius‎. ‎‎
‎As applications a necessary and sufficient conditions for the numerical range to be symmetric for $2 times 2 $ complex matrices is given‎.‎
Moreover‎, we show that the Roberts orthogonality with respect to the numerical radius implies that ‎‎‎the Roberts, Birkhoff-James and Isosceles orthogonalities for linear operators on a real Hilbert space‎. Among other results, we prove an interrelation between the Roberts orthogonality and the Birkhoff--James orthogonality in the sense of numerical radius for $n times n$ complex matrices.
کلیدواژه ها:
Roberts orthogonality‎, ‎Birkhoff--James orthogonality‎, ‎numerical range‎, ‎numerical radius
وضعیت : مقاله برای ارائه شفاهی پذیرفته شده است
دهمین سمینار آنالیز هارمونیک و کاربردها