Existence results for a class of Nonlinear semipositone problem
کد مقاله : 1050-SHAA
نویسندگان
صالح شاکری *
دانشگاه ازاد اسلامی واحد ایت الله املی
چکیده مقاله
In this article, we are interested in the existence of positive solutions for the following Kirchhoff type problems
$$
left{begin{array}{ll}
-Mleft(int_{Omega}|nabla u|^p,dxright)Delta_pu = lambda a(x)f(u)-frac{1}{u^{alpha}} quad text{ in } Omega,\
u = 0 & textrm{ on }partial Omega,
end{array}right.
$$
where $Omega$ is a bounded domain of $R^N $ with smooth boundary $partialOmega, 0 < alpha <1, 1

C(overlineOmega)$, and $f :[0,infty] longrightarrowR$ is continuous, nondecreasing function which are asymptotically $p$-linear at $infty$. We prove the existence of a positive solution for certain range of $lambda$ using the method of sub-supersolutions.

کلیدواژه ها
Kirchhoff type problems, Infinite semipositone problem, Positive solution, Sub- and supersolutions
وضعیت: پذیرفته شده مشروط برای ارائه به صورت پوستر